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On corner eddies in plane inviscid shear flow 

By L. E. FRAENKEL 
Aeronautics Department, Imperial College, London 

(Received 11 March 1961) 

Local solutions are found for the inviscid shear flow past an acute corner (of 
included angle < 4;. on the side of the fluid) on an otherwise arbitrary boundary. 
Unlike irrotational ‘corner flows ’, these solutions are determinate locally, 
provided that the vorticity is known. Under certain circumstances the existence 
of a corner eddy may be inferred. 

1. Introduction 
Yih (1959) has shown that a certain inviscid shear flow in a channel (figure 1 a )  

includes closed streamlines. The same phenomenon is seen in the shear flow past 
a semicircular projection on a plane wall (figure 1 b:  details of this solution will be 
given in $4).-f The purpose of this paper is to point out that such eddies may 
always be expected under certain conditions, which will be described, and to give 
simple expressions for the stream function in the immediate neighbourhood of 
the corner. 

We are concerned throughout with plane, inviscid, incompressible shear flow, 
and mainly with the case of constant vorticity. Then, writing 

for the stream function and coordinates, we have 

V2$ = const. = w > 0, say. (1)  

We suppose that at some point the tangents to a solidboundary (or to some other 
streamline) make an angle /5’ < in, measured on the side of the fluid. Near the 
corner the fluid is sufficiently stagnant for its motion to be determined by the 
rotation, so that (for w > 0 )  an observer moving with the fluid near the corner 
keeps the boundary on his left. We shall see that the dominant term in the 
expression for the velocity near the corner is independent of the boundary shape 
away from the corner, and that this term dominates no matter what irrotational 
flow past the boundary is added. If now the main flow further out from the 
corner is such that an observer moving with it keeps the boundary on his right, 
a corner eddy occurs. In  this case the local solution near the corner implies the 
existence of an eddy, but of course the size of the eddy depends on the flow as a 
whole. 

t Despite the apparent similarity of figure 171 to figure 1 of Yih (1960) the stream 
functions in question are quite different. 
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Flows with constant vorticity are easy to treat analytically, and viscous flows 
bounded by closed streamlines are known to have constant vorticity in the limit of 
infinite Reynolds number (Batchelor 1956). Accordingly the behaviour of 
solutions of (1) near acute corners will be studied in some detail. 
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FIGURE 1. (a )  Yih’s channel flow, ( b )  shear flow past a semicircular projection. 

We also expect our results to hold for the more general inviscid shear flow 
problem 

for if a corner occurs on the streamline $ = $o, such that f ($o)  $: 0, it is pre- 
sumably legitimate to writef($) N f($o) for the purpose of examining the flow 
very near the corner (where V$ = 0). In  the Appendix it is shown that Yih’s 
solution (of an equation of the type (2)) does in fact have the local behaviour 
predicted by this procedure, but no general proof of the occurrence of our corner 
flows in solutions of (2) will be given. 

Dean (1944) has found flows containing eddies in the lee of a peak in certain 
solutions of the Stokes slow-motion equations; such eddies are a different species 
from those considered here. 

V2$ = f (*), ( 2 )  

2. Corner flows with constant vorticity 
+/3 (P < +n). A parti- 

cular integral is given by @ = 4wr2, and the harmonic, complementary function 
required by the boundary condition may be found by inspection; thus 

We seek a solution of (1) satisfying $ = const. on 8 = 
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The streamlines are the hyperbolae 

and are shown in figure 2 a:  an observer moving with the fluid in the acute angles 
keeps the boundary on his left, as was stated above. The solution may be inter- 
preted as a corner flow or as a stagnation-point flow; that is, either AOB or AOC 
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FIUURE 2. Rotational corner flows. (a)  /3 < QT; ( h )  /3 = &r. 

could be a solid boundary, or 0 could be a stagnation point in the body of the fluid. 
The solution (3) is not unique for the region 181 < $/3, since conditions have not 
been specified on a closed boundary, and an irrotational flow 

(4) 
no 

$2 = Crn/B cos -, 
P 

where C is arbitrary, can be added without violating the boundary condition. 
However, we observe that, since rr/P > 2, qk1 dominates for suficiently small values 
of r .  

The solution (3) becomes infinite for /3 = +r, and we therefore form a linear 
combination of $l and $2 which remains finite as /3 --+ in. Writing 

we obtain 
$3 = wrr-l(&w2+r21ogrcos 20-r28sin28) @=in). 

Again we may add an irrotational flow, $2, with n/p = 2; with C = - w log air ,  
where a is an arbitrary length, we have 

k4 = wn-l {an+ + r2log ( r ia)  cos 28 - r20 sin 201 (P = &r). (5) 

The r2 log r term dominates for sufficiently small values of r .  
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The streamlines are shown in figure 2 b they are not drawn for 113 I > tn because 
r-la$,/aO is discontinuous across the negative real axis (if we choose 101 < n), so 
that the flow is not a real one there. 

Now let 4 be a solution of (1) for any field with a streamline which makes an 
acute angle at some point 0, and take coordinates with origin at  0 and with the 
positive x-axis bisecting the angle. The foregoing considerations make it plausible 
that $l or the logarithmic part of $, provide the dominant term (apart from a 
constant) in the expansion of $ about 0,  in powers and logarithms of r .  In  the 
next section we shall prove this assertion. 

3. The flow near acute corners on arbitrary boundaries 
Consider a fluid domain 9 whose boundary 9# is a Jordan curve with a corner 

at  0 of included angle < in. Various types of domain are of interest (figure 3): 
here we consider only the case (figure 3 a) in which 9 is semi-infinite and simply 

u (-- =, Y )  

( h )  

FravRE 3. Two types of fluid domain to which the present results apply locally. 

connected, since for other cases the proof only requires changes in points of detail. 
The domain can be mapped conformally on to the interior of a circle (Carathdodory 
1932; Courant 1950) or, alternatively, on to an upper half-plane. Let 

z = z (5 )  = Z ( < + i V )  

be one of the latter transformations, such that the corner z = 0 maps on to 5 = 0,  
and 9 on to 7 > 0. Let 23 be so restricted that we may write, after a suitable 
choice of constants, 

for 161 < 8, x = eia<b+o([b) (O<b=P/r<+) ,  

y($,o) = (51bsin(a+P)+O(I$le) ( $ G O ,  c > b )  1 (6) 
= (bsina+O(p) ( $ 2 0 ) .  

26-2 
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A sufficient (but by no means necessary) condition for this is that the two arcs of 
G? meeting at 0 have bounded curvature in - 6 6 6 6 @ and @ &  5 < 6,  respec- 
tively; for then we may first apply the Schwarz-Christoffel mapping appropriate 
to the tangents at the corner, and then the theorem in $152 of Carathkodory 
(1932). We further restrict 97 to have y finite and dyldx N O ( X - ~ )  for 1x1 + co: 
then for 161 -+ co, 

z = k, 6 + k, log 5 + IC, + O( {-I) (k,, k,  real). 

Our problem is to solve (1) with the boundary conditions 

(7 )  

(8) 

I $ = const. on G? 
3+0, - - -~-u+o,  a@ as I z l - + m i i n ~ .  
ax a Y  

The solution is 

where $ I  is a harmonic function required by the boundary condition on 9. 
Representing it by sources on 7 = 0, we have 

@ =  &Wy2+Uk1v+@I, 

W 

Here A and B are points on 97 such that ayla(5 is continuous for 6 ( A  and 
6 2 tB [and O(5-2) for + a], and we confine Cl to the domain g1: lCll < e, 
0 < arg < T ,  where S > E > 0. For 151 > 6, the integrands in (9) are continuous 
functions of 5, uniformly convergent for 161 -+ 00, and regular functions of l1. 
Hence, if F(LJ denotes a function which is regular in gl, 

O(Ab+c) hZbsin 
-. +-.- 

277 

Now, by the contour integration associated with the beta function, 

= Clog 5- (5  * 6) log (6 5 8) * 6 (a  = 1). 
Hence 

Omitting the trivial constant .YF(O), we have 
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Transforming to z ,  writing z = r exp { i ( ~  + a + ip)} ,  adding the first two terms of 
(8), and simplifying, we obtain 

= wn-l r2 log r cos 27 + O(r2) (b  = +), (11) 

whichis therequiredresult. The sign of $yields the local flow directions described 
in $ 5  1 and 2. 

4. An example 
Consider the flow past a semicircular projection, r = 1, 0 6 8 < n, on a plane 

wall, 8 = 0, n, r 2 1. The Joukowski transformation 

5 = z+z-1 (C=f+ir )  

maps the fluid domain on to 7 > 0 and the semicircle on to 7 = 0, 
the differential equation (1) and the boundary conditions (7), we have 

6 2 .  For 

II. = -&my2+ U(r-r-l)sinO+$.,, (12) 

Hence 

a 1 
where $., = 9; y2([*, 0) ~ d f *  and yZ(f, 0) = 1 - g 2 .  5-  t* 

The case shown in figure 1 b is for U = 0; adding an irrotational flow with U > 0 
reduces the size of the eddies, and introduces stagnation points on 

O =  0,n) 1 < r < 00. 

I am indebted to Miss M. Lawson for computing the streamlines of figures 1 b 
and 2b.  

Appendix : Yih's solution 

there is a sink at  the origin and 
Yih (1959) has considered the flow in a channel - 1 < y 6 1, x < 0, in which 

u - t c o s ~ n y  for x i -  -a, 

so that 
He gives the solution 

V 2 $ = - 1  477 2 $* 

where 
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We sum a series whose terms are asymptotically equal to A,. For n + 00, 
% 

With 

we have 

and relat 

ens = t, ennX sin nny = 4 t m ,  

d series can be 'summed' by integrating both sides from 0 to t. Henc 
~ I _  

nx t 2  1 nx 1 
8 ) 2  ,=3 (n 8 n(n-1)  

9 t+ 1--  -+ 2 tn - - - ~  [ ( 
= 4[ -log (1 -t) -&rx((l -t) log (1 -t) +t} 

+ (gnx +&7r2x2) ( - *( 1 - t)2log (1 - t) - i t  + stzj 

+i( - *( 1 +t)Zlog (1 + t )  + gt+ p}] 
= g(x,y), say. 

The function 9 - (4/na) g has derivatives with respect to  x and y up to the 
second order, for all x < 0 and all y, since the terms of its expansion are O(tnn-4) 
for n -+ 00, with It1 < 1. Hence any singularities of @ leading to infinite values of 
9 or of its k s t  and second partial derivatives must also be present in (4/n2) g. 
Near x = 0, y = - 1, with 

z+i = z*, t = en= = -l-nnz*+O(z*2), 

the local singularity of 9 is therefore given by the (1 + t ) 2  log (1 + t )  term of g. 
Since z* = 0 is a stagnation point, we have 

@ = - 2 / 7 r - ~ * 2 " 2 1 0 g ~ * + 0 ( ~ ~ * ~ 2 ) .  

This agrees with (ll),  for w = in on the streamline in question. 
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